

2024年度 第1回ARIM量子・電子マテリアル領域セミナー 最先端デバイス技術

最先端デバイスへ広く展開している ALD技術

物質·材料研究機構 生田目 俊秀

原子層堆積法 Atomic Layer Deposition : ALD

次 Ħ

1. VLSI2024での ALD 技術とALDの歴史

2. CMOSロジック

3. InO_x系チャンネル

4. HfZrO_x強誘電体膜

5. GaNゲート絶縁膜

6. まとめ

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

VLSI2024から見えるALD技術

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

ALD技術が用いられている最先端電子デバイス

ALDモードはどこ?

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

ALD法で検討されている元素

周期表

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1																	2
1	Н																	He
	З	4											5	6	7	8	9	10
2	Li	Be											В	С	Ν	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	Ρ	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	ニ ンタノ	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	イド系	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
	87	88	アクチノ	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	イド系	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	F١	Мс	Lv	Ts	Og

ランタノ イド系	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
マクチ ノ	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
イド系	Ac	Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

元素数:49

R. L. Puurunen., J. Appl. Phys. 97, 121301 (2005).

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

ALDの歴史

1977

Suntolaの特許

0 1

10

20

30 minutes

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

ALDの歴史

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

ALDの歴史

ロジックCMOSの推移

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

ロジックCMOSの推移(FinFET)

Intel C-H. Jan et al., IEDM2012, p.44.

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

ロジックCMOSの推移(MoS₂)

NYCU&TSMCグループ

B.-J. Chou et al., Nanotechnology 35, 125204 (2024).

Intel W. Mortelmans et al., VLSI2024, T3.1 (2024). Toshihide Nabatame

ロジックCMOSでのALD技術のまとめ

O 3D構造で、チャネル材料が変わってもゲート絶縁膜 及び電極の成膜は、ALD技術が継続。

O ALD数サイクルでの膜厚制御が要求。

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

ALD-InO_x系チャネルに望まれる事

Ni

 ln_2O_3 Al₂O₃ ITO PLN

Ti/Al/Ti

Мо

P+ Si

poly-Si

Substrate

SiO₂/SiN_x

SiN_x/SiO₂

(a) n-FET in BEOL

Top-Gate LTPS p-FET

(b) 3D vertical FeFET

W. Tang et al., IEDM, p.483, 2022.

F. Mo et al., IEEE J. Electron. Devices Soc. 8, 717 (2020).

	プロセス温度 (<350°C)	内壁の均質膜						
	V _{on} > 0V (ノーマリオフ)							
	In ₂ O ₃ : 金属的、V _{on} <0V InGaZnO: V _{on} >0V ALDの特徴							
2024年度	2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10 Toshihid							

ALDによる酸化物半導体の報告例

ALD-In, Ga, Zn原料の推移

2024年度第1回ARIMセミナー最先端デバイス技術 2024.07.10

In原料 : 19種類 (13原料/7年間) Ga原料 : 9種類 Zn原料 : 8種類

B. Macco et al., Appl. Phys. Rev. 9, 04313 (2022).

ALD-InGaZnO FET

東大 (小林先生)& 奈良先端大(浦岡先生、高橋先生)

K. Hitaka et al., VLSI2024 T4-1 (2024).

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

ALD-InGaZnO FET(新In-Ga原料)

ALD-InO TFTの課題(~2018)

AL	D-In	O:5-20	nm					
Precursor		ALD (°C)	PMA (°C)	$\mathbf{V_{th}}\left(\mathbf{V}\right)$	V _{on} (V)	μ (cm ² /Vs)	SS	Ref.
InCp	In ₂ O ₃	160	300	-3.7		7.8	0.32	1
Me ₂ In(EDPA)	In ₂ O ₃	90	350		-1.0	18	0.17	2
Et ₂ InN(SiMe ₃) ₂	InO _x	200	350	-1.2		39.2	0.27	3
V _{on} < 0Vで、ノーマリオフが得られない。								

1. Q. Ma, et al., Nanoscale Res. Lett., 13, 2 (2018).

2. H.-I. Yeom, et al., J. Mater. Chem., C, 4, 6873 (2016).

3. H. Y. Kim et al., ACS Appl. Mater. Interfaces, 8, 26924 (2016).

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

ALD-InO極薄膜化 (~0.7nm)

Purdue Univ. (Peide D. Ye)

M. Si et al., Nano Lett. 21, 500 (2021). M. Si et al., IEEE Electron Device Lett. 42, 184 (2021). Toshihide Nabatame

ALD-InO極薄膜化 (~0.7nm)

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

ALD-InOのGAA&HZO FeFET

ALD-In₂O₃ GAA-nanoribbon FET

Z. Zhang et al., IEEE Electron Device Lett. 43, 1905 (2022).

50 nm

Vertical ALD-In₂O₃/HZO FeFET

Z. Lin et al., VLSI2024 T4-1 (2024).

Purdue Univ. (Peide D. Ye)

2024年度 第1回ARIMセミナー 最先端デバイス技術 2024.07.10

13種類のALD-In原料の開発(7年間)

B. Macco et al., Appl. Phys. Rev. 9, 04313 (2022).

 R. Kobayashi et al., J. Appl. Phys. 60, 030903 (2021).
 R. Kobayashi et al., ECS Trans. 92 3 (2019).

 2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10
 Toshihide Nabatame

ALD-C-doped-InO

NIMS

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

R. Kobayashi et al., ECS Trans. 92 3 (2019).

ALD-C-doped-InO

²⁰²⁴年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

InO_xチャネルでのALD技術のまとめ

Von>0Vへ向けたALDの工夫

1. ALD-InO_x

・厚膜(~5nm)では、ALD原料からのCドープ。

2. ALD-InGaZnO

Hf_xZr_{1-x}O₂ (HZO) 強誘電体膜のNVDRAM

BEOL Metallization + MIM Cap.

Layer 2 (1T1C Array)

Layer 1 (1T1C Array)

CMOS Under Array

	Read / Write Endurance	Data Retention
DRAM	> 10 ¹⁵	Seconds
NVDRAM	> 10 ¹⁵	>10 years @ 55°C
NAND	10 ³ - 10 ⁵	> 5 years @ 55°C

TiN HZO TiN 100nm

Cycles

N. Ramaswamy et al., IEDM2023, T15-7 (2023).

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

Micron

<u> Hf_xZr_{1-x}O₂ (HZO) デバイスでの要求</u>

HZO膜は、幅広いHf:Zr組成で安定な特徴がある。

FeFET&FeRAMの強誘電体デバイスでは、400℃以下の 低温度作製が要求されている。

ALD-HZO膜の作製方法

HZO一括成膜の効果

300℃成膜したas-grown HZO膜は、ナノ粒子 (~5 nm) が認められる。 300℃のPMA処理で、粒サイズ10-20 nmに粒成長した。

NIMS

T. Onaya et al., *Microelectron. Eng.* 215, 111013 (2019). Toshihide Nabatame

HZO一括成膜の効果

PMA300℃及び400℃で作製したキャパシタは、ほぼ同じ 絶縁破壊電界(~3.5 MV/cm)を示した。 大きな分極特性(2*P*, = 29 µC/cm²) を示した。

NIMS

T. Onaya et al., *Microelectron. Eng.* 215, 111013 (2019). Toshihide Nabatame

HZO一括成膜の300°C低温形成したHZO膜

Hf/Zrカクテル原料を用いたALDによって、300℃の低温度プロ セスで、大きな分極特性を示すHZO強誘電体膜を作製できた。

NIMS

T. Onaya et al., Microelectron. Eng. 215, 111013 (2019).

2024年度第1回ARIMセミナー最先端デバイス技術_2024.07.10

結晶ZrO₂シード層によるHZO膜の改善

ALD-ZrO₂層は、As-grown膜でo, t-,c相の結晶化している。 HZO膜も、o, t-,c相の結晶成長しやすい。

NIMS

T. Onaya et al., APL Mater. 7, 061107 (2019).

2024年度 第1回ARIMセミナー 最先端デバイス技術_2024.07.10

GaNパワーデバイスのALD-絶縁膜

2024年度第1回ARIMセミナー最先端デバイス技術 2024.07.10

T. Nabatame et al., Appl. Phys. Express 12, 011009 (2019).

まとめ

最先端デバイスに、原子層堆積 (ALD) 技術はスタン ダードであり、理由として、表面吸着反応律速のため。

ロジックCMOS;

3D構造で、ALDでゲート絶縁膜及び電極の作製。 InO、系チャネル;

InO_xヘドープ技術、IGZOのALD原料開発。 HZO強誘電体膜;

ラミネート、ALDカクテル原料、ZrO₂シード。 GaNデバイス用絶縁膜;

アモルファスAISiO_x, HfSiO_x。

新規なALD原料の開発は必要!

NIMS: 塚越一仁氏、澤田朋実氏、三浦博美氏、 宮本真奈美氏、大井暁彦氏、池田直樹氏、井上万里氏

<mark>芝浦工大</mark>:大石知司先生、清野肇先生、木村将之氏、 山田博之氏、山本逸平氏、弓削雅津也氏、 前田瑛里香氏、廣瀬雅史氏

明大:小椋厚志先生、栗島一徳氏、女屋崇氏、小林陸氏

に感謝致します。

ご清聴ありがとうございました。